

COLLEGE OF ENGINEERING & TECHNOLOGY

(AUTONOMOUS)

Accredited by National Board of Accreditation, AICTE, New Delhi, Accredited by NAAC with "A" Grade – 3.32 CGPA, Recognized under 2(f) & 12(B) of UGC Ad 1956, Approved by AICTE, New Delhi, Permanent Affiliation to JNTUK, Kakinada Approved by AICTE, New Delhi, Permanent Affiliation to JNTUK, Kakinada Seetharampuram, W.G.DT., Narsapur-534280, (Andhra Pradesh)

DEPARTMENT OF MATHEMATICS

TEACHING PLAN

Cour Cod	2. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	Sem	Branches	Contact Periods /Week	Academi Year	comm	ate of encement emester
20IT3	T01 DISCRETE MATHEMATICS	Ш	CSE (A,B, C) IT & AIML	42/16	2021-22	25-	10-2021
COURS	SE OUTCOMES: Stud			is the			2)
1	identify programming	g errors effic	iently through	n enhanced	logical capa	bilities (K	.3)
2	find a general solution	n of recurren	of recurrence equation (K3)				
3			of the relations which are used in data structures (K3)				
4	explain the concepts i	n graph theo	ry (K3)			1	-l. theory
5	apply graph theory coeffectively. (K3)	oncepts in co	ore subjects s	uch as data		nd netwo	rk theory
UNIT	Out Comes / Bloom's Level	Topic No.	Topics/A	ctivity	Text Book / Reference	Contact Hour	Delivery Method
		- 15 1	Mathematical Logic				
		1.1	Connectives	5,			
			negation,				
I	Students are able to identify programming errors efficiently through enhanced logical capabilities CO1 (K3)		conjunction disjunction	,	T ₁ & T ₂	1	
		**************************************	conditional, bi-conditional	1.75	- Paris I	1	Chalk &
		1.2	statement and Truth T	formula ables	T ₁ & T ₂	1	Talk, Active
		1.3	well formed	· · · · · · ·		T T	Learning, PPT &
			tautologies,		$T_1 & T_2$	1	Tutorial
			equivalence implication				
		1.4	equivalence formulae,	of	T ₁ & T ₂	1	
		1.5	duality, tau		T ₁ & T ₂	1	J

COLLEGE OF ENGINEERING & TECHNOLOGY

(AUTONOMOUS)

Accredited by National Board of Accreditation, AICTE, New Delhi, Accredited by

NAAC with "A" Grade – 3.32 CGPA, Recognized under 2(f) & 12(B) of UGC Act 1956,

NAAC with "A" Grade – 3.92 CGPA, Recognized under 2(f) & 12(B) of UGC Act 1956,

NAAC with "A" Grade – 3.92 CGPA, Recognized under 2(f) & 12(B) of UGC Act 1956,

NAAC with "A" Grade – 3.92 CGPA, Recognized under 2(f) & 12(B) of UGC Act 1956,

NAAC with "A" Grade – 3.92 CGPA, Recognized under 2(f) & 12(B) of UGC Act 1956,

NAAC with "A" Grade – 3.92 CGPA, Recognized under 2(f) & 12(B) of UGC Act 1956,

NAAC with "A" Grade – 3.92 CGPA, Recognized under 2(f) & 12(B) of UGC Act 1956,

NAAC with "A" Grade – 3.92 CGPA, Recognized under 2(f) & 12(B) of UGC Act 1956,

NAAC with "A" Grade – 3.92 CGPA, Recognized under 2(f) & 12(B) of UGC Act 1956,

NAAC with "A" Grade – 3.92 CGPA, Recognized under 2(f) & 12(B) of UGC Act 1956,

NAAC with "A" Grade – 3.92 CGPA, Recognized under 2(f) & 12(B) of UGC Act 1956,

NAAC with "A" Grade – 3.92 CGPA, Recognized under 2(f) & 12(B) of UGC Act 1956,

Approved by AICTE, New Delhi, Permanent Affiliation to JNTUK, Kakinada Seetharampuram, W.G.DT., Narsapur-534280, (Andhra Pradesh)

		1.6	functionally complete set of connectives, other connectives	T ₁ & T ₂	1	
a Sinery		1.7	principal disjunctive and conjunctive normal forms	T ₁ & T ₂	1	
		1.8	inference calculus, rules of inference	T ₁ & T ₂	1	
		1.9	consistency of premises, indirect method of proof	T ₁ & T ₂	1.	
		1.10	Theory of inference for the statement calculus, validity using Truth tables.	T ₁ & T ₂	1	
	20 1 10 10 10 10 10			Total	VIC.	10
			RECURRENCE	RELATION	ND C	
1.17		2.1	Generating Function of Sequences	R_1	1	
	Students are able to find a general	2.2	Calculating Coefficient of generating functions and Generating functions	T ₁ , T ₂ & R ₁	1	Chalk & Talk,
II	solution of	2.3	Recurrence relations	$T_1, T_2 \& R_1$	1	Active
	recurrence equation CO2(K3)	2.4	solving recurrence relation by substitution	T_1, T_2 & R_1	1	Learning. PPT & Tutorial
grife a		2.5	the method of Characteristic roots	$T_1, T_2 \& R_1$	1	
		2.6	Solution of Inhomogeneous	R_1	1	
		2.7	Recurrence Relation	$T_1, T_2 \& R_1$	1	
		d today		Total		7

COLLEGE OF ENGINEERING & TECHNOLOGY

(AUTONOMOUS)

Accredited by National Board of Accreditation, AICTE, New Delhi, Accredited by NAAC with "A" Grade – 3.32 CGPA, Recognized under 2(f) & 12(B) of UGC Act 1956, Approved by AICTE, New Delhi, Permanent Affiliation to JNTUK, Kakinada Seetharampuram, W.G.DT., Narsapur-534280, (Andhra Pradesh)

		4 6 7 7 1	SET THEORY A		CION	S
		3.1	Relations and ordering, Relations, Properties of binary Relations in a set	T ₁ , T ₂ & R ₁	1	
		3.2	Relation Matrix and the Graph of a Relation	T_1 , T_2 & R_1	1	
	The student should be	3.3	Partition and covering of a set	$T_1, T_2 \& R_1$	1	Chalk &
III	able learn set theory, graph of the relations	3.4	Equivalence Relation	$T_1, T_2 \& R_1$	1	Talk, Active
	which are used in data structures.(CO3)(K3).	3.5	Compatibility Relation	$T_1\& T_2$	1	PPT & Tutorial
		3.6	Composition of Binary Relations	T ₁ & T ₂	1	lutorial
		3.7	Partial ordering, Hasse diagram	T ₁ & T ₂	1	
		3.8	Principle of Inclusion-Exclusion	$T_1\& T_2$	1	
		3.9	Pigeon hole principleand its applications	T_1 , T_2 & R_1	1	
				Total		9
			GRAPHS THEORY			
		4.1	Basic Concepts	T_1, T_2 & R_1	1	
				IX]	2.0 3%	
		4.2	Representation of Graph	T_1, T_2 & R_1	1	
IV	The student should be	4.2		T_1, T_2 &	1	Chalk &
IV	able to explain the	4.3	Graph Sub graphs,	$T_1, T_2\&$ R_1		Talk, Active
IV		4.3	Graph Sub graphs, Multigraphs	$T_1, T_2\& R_1$ $T_1\& T_2$	1	
IV	able to explain the concepts in graph	4.3	Graph Sub graphs, Multigraphs Planar graphs Euler Paths, Euler	$T_1, T_2\&$ R_1 $T_1\& T_2$ $T_1\& T_2$ $T_1, T_2\&$	1	Talk, Active Learning, PPT &
IV	able to explain the concepts in graph	4.3 4.4 4.5	Graph Sub graphs, Multigraphs Planar graphs Euler Paths, Euler circuits	$T_1, T_2 \& R_1$ $T_1 \& T_2$ $T_1 \& T_2$ $T_1, T_2 \& R_1$	1 1 1	Talk, Active Learning, PPT &
IV	able to explain the concepts in graph	4.3 4.4 4.5 4.6	Graph Sub graphs, Multigraphs Planar graphs Euler Paths, Euler circuits Hamiltonian Graphs	$T_1, T_2\&$ R_1 $T_1\& T_2$ $T_1\& T_2$ $T_1, T_2\&$ R_1 $T_1\& T_2$	1 1 1	Talk, Active Learning, PPT &

COLLEGE OF ENGINEERING & TECHNOLOGY

(AUTONOMOUS)

Accredited by National Board of Accreditation, AICTE, New Delhi, Accredited by

NAAC with "A" Grade – 3.32 CGPA, Recognized under 2(f) & 12(B) of UGC Act 1956,

Approved by AICTE, New Delhi, Permanent Affiliation to JNTUK, Kakinada

Approved by AICTE, New Delhi, Permanent Affiliation to JNTUK, Kakinada

Seetharampuram, W.G.DT., Narsapur-534280, (Andhra Pradesh)

erational Leaf Witter	CYCARI ARIBINETI II JURA		TRI	EES		100	
	The student should be	5.1	Spanning Tree	T ₁ & T ₂	. 1		
V	able to apply graph	5.2	Minimal Spanning Trees	T ₁ & T ₂	1	Chalk & Talk, Active	
	theory concepts in core	5.3	BFSAlgorithm	T ₁ & T ₂	1	Learning,	
	subjects such as data	5.4	DFSAlgorithm	T ₁ & T ₂	1	PPT &	
	structures and network	5.5	Kruskal's Algorithm	$T_1\& T_2$	1	Tutorial	
	theory effectively.	5.6	Prim's Algorithm	T ₁ & T ₂	1		
	(CO5) (K3)	5.7	Binary trees	T ₁ & T ₂	1		
				Total	.4	7	
		CUMI	JLATIVE PROPOSED	PERIODS		42	
Text B			E, EDITION, PUBLISH		î		
T1 T2	J.P. Tremblay and R. Manohar, Discrete Mathematical Structures with Application to Computer Science, Tata McGraw Hill, 1997. Joe L. Mott, Abraham Kandel and T. P. Baker, Discrete Mathematics for computer scientists & Mathematicians, 2/e, Prentice Hall of India Ltd, 2012.						
Refere	anas Pooles						
S.No.	AUTHORS, BOOK		E, EDITION, PUBLISHI			лу Hill 2009	
R1 .	Keneth. H. Rosen, Dis	Vaneth H. Rosen, Discrete Mathematics and its Applications, 6/e, 1 at a McGraw-Hin, 2007					
R2	Richard Johnsonburg,	Richard Johnsonburg, Discrete Mathematics, 7/e, Pearson Education, 2008					
R3	Narsingh Deo, Graph Prentice Hall of India,	Narsingh Deo, Graph Theory with Applications to Engineering and Computer Science, Prentice Hall of India, 2006.					
Web I	Details		01/				
	https://onlinecours	es.nptel	.ac.in/noc16_ma01/previe	<u>w</u>	7	Op.	
1		https://stanford.edu/~rezab/classes/cme305/W17/					
2	https://stanford.ed	u/~rezat	o/classes/cme305/W1//				
	https://stanford.ed/ https://nptel.ac.in/o	courses/	106106094/				

		Name	Signature with Date
: F	coulty	Mrs. S.S.V.Santhi(CSE-A, B & C)	Seulli
	aculty aculty	Mrs. P. Sujatha (IT) AIML	Ply
	Course Coordinator	Mrs. S.S.V.Santhi	Santh.
	Module Coordinator	Ch. Peddiraju	Cho P. heye
v P	rogramme Coordinator	Dr. S. Dharaja Devi	199

Principal